Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Production Research ; 61(8):2758-2778, 2023.
Article in English | ProQuest Central | ID: covidwho-2287234

ABSTRACT

Thin-film-transistor liquid-crystal displays (TFT-LCDs) have gained popularity due to their widespread use in the production of televisions, laptops, and iPads. TFT-LCD firms' activities that build relationships with suppliers and customers contribute to the emergence of supply networks. A firm's ability to identify risks, however, is complicated, as TFT-LCD supply networks are becoming increasingly global, complex, and interconnected. The extant research on the topological structure of TFT-LCD supply networks is limited, and the risks identified rely on untested assumptions about the topological structure of such networks. To fill these gaps, this study examines the topological structure and COVID-19 related risk propagation in TFT-LCD supply networks from a dynamic perspective. First, the evolution of the topological structure of TFT-LCD supply networks from 2015 to 2020 is explored by constructing a weighted and undirected supply network. Second, the hidden risky sources in TFT-LCD supply networks are revealed by the proposed risk propagation model. The results show that TFT-LCD supply networks are characterised by a ‘hub and spoke' feature and an explicit shift from geographical to global cooperation. Additionally, a ‘robust-yet-fragile' configuration in these supply networks is uncovered, and the hidden risky sources in the main TFT-LCD manufacturers and suppliers and in interfirm cooperations are revealed. These findings will help managers reduce the vulnerability of TFT-LCD supply networks to disruptions and construct more robust and resilient networks.

2.
Physica A ; 604: 127889, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-1914904

ABSTRACT

Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, the international medical device trade has received extensive attention. To maintain the domestic supply of medical devices, some countries have sought multilateral trade cooperation or simply implemented export restrictions, which has exacerbated the instability and fragility of the global medical device market. It is crucial for government policymakers to identify the most influential countries in the international medical device trade and nip exports in the bud. However, few efforts have been made in previous studies to explore various countries' influence on the international medical device trade in light of their intricate trade relationships. To fill these research gaps, this study constructs a global medical device trade network (GMDTN) and explores the criticality of various countries from a network-based perspective. The evolution patterns and geographical distribution of influence among countries in the GMDTN are revealed. Details on the ways in which the influence of some crucial countries has formed are provided. The results show that the global medical device trade market is export oriented. The formation of some countries' strong influence may be due to their large number of trading partners or the deep dependence of some of those trading partners on that country (namely, breadth- or depth-based patterns). It is worth noting that the US has a dominant position in the international medical device trade in terms of both breadth and depth. In addition, some countries play a critical role as intermediate points in the influence formation process of other countries, although these countries are not critical direct trading partners. The findings of this study provide implications for policymakers seeking to understand the influence of countries on the international medical device trade and to proactively prepare responses to unexpected changes in this trade.

3.
International Journal of Production Research ; : 1-21, 2022.
Article in English | Taylor & Francis | ID: covidwho-1665760
SELECTION OF CITATIONS
SEARCH DETAIL